Volume 24, Issue 6 (Feb - Mar 2021)                   2021, 24(6): 592-613 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Andalib A R, Radandish M. Immunological and Clinical Aspects of Immune Responses to SARS-CoV-2. Journal of Inflammatory Diseases. 2021; 24 (6) :592-613
URL: http://journal.qums.ac.ir/article-1-3104-en.html
1- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. , andalib@med.mui.ac.ir
2- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Full-Text [PDF 10947 kb]   (195 Downloads)     |   Abstract (HTML)  (447 Views)
Full-Text:   (34 Views)
1. Introduction
he Coronavirus Disease 2019 (COVID-19) caused by a coronavirus named SARS-CoV-2 from the family Coronaviridae, was first reported in December 2019 in China [1]. The disease have mild or severe symptoms such as fever, chills, cough, shortness of breath, body aches, and gastrointestinal symptoms, followed by severe inflammation, cytokine storm, acute respiratory distress syndrome, and dysfunction of other organs. Most people infected with this virus return to normal life, although tissue damage caused by the virus may remain in their body [4]. In this study, we hypothesize that innate and acquired immune responses play an important role in resistance to SARS-CoV-2.
2. Materials and Methods
This is a narrative review study. The search was conducted on related studies published during January- October 2020 in Google Scholar, PubMed, Embase, and Scopus databases using the keywords Covid-19, Immunology, and Immunopathogenesis. Among abundant and mostly repetitive information, the immunological aspects were selected. Having knowledge of the immunopathogenesis and progression of COVID-19 can help the medical staff develop appropriate interventions for the patients. Therefore, the content is designed by describing clinical cases and immunological aspects involved in the disease process and the use of intervention facilities based on immunological findings. 
3. Results
The SARS-CoV-2 can enter the cell by binding to the Angiotensin-Converting Enzyme 2 (ACE2) receptor and Trans-Membrane Protease Serine 2 (TMPRSS2) on the surface of lung epithelial cells [18]. The main pathogenic mechanism of infection with SARS-CoV-2 is the stimulation of inflammatory response followed by damage to the alveoli of lung tissue. In uncontrolled immune responses, the infiltration of macrophages, monocytes, neutrophils, and inflammatory T cells into the alveoli increases which leads to tissue damage in the lungs and other organs by overproduction of inflammatory cytokines such as Interleukin 6 (IL-6), Tumor Necrosis Factor alpha (TNF-α), Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF), interleukin 6 (IL-8), Interferon gamma (IFNγ), etc. [7, 17]. Therefore, the severity of the disease in individuals is correlated to the host’s uncontrolled inflammatory/immune response.
Immunological aspects
As shown in Figure 1, SARS-COV-2 stimulates the pyroptosis of alveolar cells, leads to immune cells infiltration into the infection site. 

Then, 7-14 days after infection, the amount of antibodies in the blood can be detected. The increased IgM, IgG, IgA antibodies can be detected by laboratory methods [41]. B cells first make antibodies in response to N antigen and then against S antigen of SARS-CoV-2 [42]. Specific antibody against S protein Receptor-Binding Domain (RBD) inhibit the virus from binding to the ACE2 receptor which is called neutralizing antibody [43]. Following pyroptosis of the infected cells, the NOD Like Receptor family Pyrin domain containing 3 (NLRP3) inflammasome activation can enhance the production of inflammatory cytokines. Damage-Associated Molecular Patterns (DAMPs) are detected by Pattern Recognition Receptors (PRRs) of alveolar macrophages which causes the production of cytokines and chemokines [13], and the migration of monocytes, macrophages, and T cells from the peripheral blood into the alveoli, leading to disruption in lung function. Lack of control of this process challenges the patient’s health by causing damage to the lung tissue [24]. Due to the association of the severity of COVID-19 with the host’s immune response, targeting any of the immunopathological pathways to inhibit inflammatory responses can cause patient survival. With an appropriate immune response, alveolar macrophages can prevent ectopic immune responses by phagocytosis of apoptotic cells and the viruses neutralized by antibodies [19]. However, in some cases, following the production of CXCL9/10/11 chemokines by active monocytes in the lung, Natural Killer (NK) cells traffic to the site of infection which leads to lysis of virus-infected cells. When antibodies are produced, the NK cell is activated in response to antibody-coated cells, cause Antibody Dependent Cell Cytotoxicity (ADCC) and Antibody Dependent Enhancement (ADE), and produces perforin, granzymes, and pro-inflammatory cytokines and chemokines [29, 30]. The NK and T cell dysfunction, lymphopenia, and infection of immune cells such as monocytes with ADE mechanism are factors causing the body’s failure in resistance to SARS-CoV-2 [13]. 
The increased lymphocyte cytokines of Th1, Th2, and Th17 cells in COVID-19 patients are involved in activating Cytotoxic T lymphocytes (CTLs) for the lysis of virus-infected cells including the cytokines of Th1 cell such as IL-12, IFNγ, TNFα and etc. Th2 cells also induce antibody production by delivering viral antigens to B cells [38]. Although the number of Th17 cells is lower than that of other cells, their number in COVID-19 patients is higher; the uncontrolled increase of their IL-17 cytokine can result in increased inflammation [39]. The increase in GM-CSF-producing TCD4+ T cells play an essential role in polarization and stimulation of inflammatory macrophages and increased lung damage [37]. Reduced regulatory T cell phenotypes observed in severe stages of the disease have correlation with immunopathogenesis [13].
Clinical aspects
The COVID-19 diagnosis is based on the clinical symptoms and the results of molecular tests (such as Polymerase Chain Reaction test), or computerized tomography scan followed by serological tests and measuring biochemical factors in the blood (e.g. lymphocyte and platelet counts, C-reactive protein, dimerized plasmin fragment D, lactate dehydrogenase, serum amyloid A, procalcitonin, urea, creatinine, and direct bilirubin) can also help monitor the disease. Their abnormal changes have correlation the with disease progress or severity [51, 67, 69]. Furthermore, intervention of IFN types I and III can effectively cause the resistance of healthy cells to the virus and inhibit virus replication and accumulation in the infected cells. The use of immune system regulators such as chloroquine, corticosteroids, inflammatory cytokine blockers such as anti-IL-6, anti-IL-1, and immune or stem-cell therapy at the right time can have an enhanced effect on the recovery of the disease or inhibit the disease progression [85, 90, 102].

Ethical Considerations
Compliance with ethical guidelines

Ethical approval was not sought for the present study because this article does not contain any studies with human or animal subjects

This study was supported by the Deputy of Isfahan Medical School.

Authors' contributions
The authors contributed equally in preparing this article.

Conflict of interest
The authors declare no conflict of interest.

The authors would like to acknowledge the encouragement provided by the Head of School of Medicine, Isfahan University of Medical Sciences.

  1. Hui DS, Azhar EI, Madani TA, Ntoumi F, Kock R, Dar O, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020; 91:264-6. [DOI:10.1016/j.ijid.2020.01.009] [PMID] [PMCID]
  2. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19 [Internet]. 2020 [Updated 2020 March 11]. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
  3. Johns Hopkins University & Medicine. COVID-19 dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University [Internet]. 2020 [Updated 2020]. Available from: https://coronavirus.jhu.edu/map.html
  4. Centers for Disease Control and Prevention (CDC). Symptoms of COVID-19 [Internet]. 2020 [Updated 2020]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
  5. Murthy S, Gomersall CD, Fowler RA. Care for critically Ill patients with COVID-19. JAMA. 2020; 323(15):1499-500. [DOI:10.1001/jama.2020.3633] [PMID]
  6. World Health Organization. Multisystem inflammatory syndrome in children and adolescents temporally related to COVID-19: Scientific brief [Internet]. 2020 [Updated 2020 May 15]. Available from: https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19
  7. Qin Ch, Zhou L, Hu Z, Zhang Sh, Yang Sh, Tao Y, et al. Dysregulation of immune response in patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020; 71(15):762-8. [DOI:10.1093/cid/ciaa248] [PMID] [PMCID]
  8. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: Recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016; 14(8):523-34. [DOI:10.1038/nrmicro.2016.81] [PMID] [PMCID]
  9. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020; 5(4):536-44. [DOI:10.1038/s41564-020-0695-z] [PMID] [PMCID]
  10. Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. In: Maier H, Bickerton E, Britton P, editors. Coronaviruses. Methods in Molecular Biology. Vol. 1282. New York, NY: Humana Press. [DOI:10.1007/978-1-4939-2438-7_1] [PMID] [PMCID]
  11. Centers for Disease Control and Prevention (CDC). How COVID-19 spreads [Internet]. 2020 [Updated 2020]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html
  12. World Health Organization. Q & A on coronaviruses (COVID-19) [Internet]. 2020 [Updated 2020 April 22]. Available from: Not Found Link.
  13. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020; 130(5):2620-9. [DOI:10.1172/JCI137244] [PMID] [PMCID]
  14. Wang D, Hu B, Hu Ch, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323(11):1061-9. [DOI:10.1001/jama.2020.1585] [PMID] [PMCID]
  15. Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, et al. Coronavirus disease 2019 (COVID-19): A perspective from China. Radiology. 2020; 296(2):E15-25. [DOI:10.1148/radiol.2020200490] [PMID] [PMCID]
  16. Li LQ, Huang T, Wang YQ, Wang ZP, Liang Y, Huang TB, et al. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020; 92(6):577-83. [DOI:10.1002/jmv.25757] [PMID] [PMCID]
  17. Wong CK, Lam CW, Wu AK, Ip WK, Lee NL, Chan IH, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004; 136(1):95-103. [DOI:10.1111/j.1365-2249.2004.02415.x] [PMID] [PMCID]
  18. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798):270-3. [DOI:10.1038/s41586-020-2012-7] [PMID] [PMCID]
  19. Huang Ch, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223):497-506. [DOI:10.1016/S0140-6736(20)30183-5]
  20. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020; 12(1):8. [DOI:10.1038/s41368-020-0074-x] [PMID] [PMCID]
  21. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020; 76:14-20. [DOI:10.1016/j.ejim.2020.04.037] [PMID] [PMCID]
  22. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007; 7(10):803-15. [DOI:10.1038/nri2171] [PMID]
  23. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2):271-80.E8. [DOI:10.1016/j.cell.2020.02.052] [PMID] [PMCID]
  24. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020; 92(6):552-5. [DOI:10.1002/jmv.25728] [PMID] [PMCID]
  25. Gu J, Han B, Wang J. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 2020; 158(6):1518-9. [DOI:10.1053/j.gastro.2020.02.054] [PMID] [PMCID]
  26. Levi M, van der Poll T. Inflammation and coagulation. Crit Care Med. 2010; 38(2 Suppl):S26-34. [DOI:10.1097/CCM.0b013e3181c98d21] [PMID]
  27. Conti P, Caraffa A, Gallenga CE, Ross R, Kritas SK, Frydas I, et al. IL-1 induces throboxane-A2 (TxA2) in COVID-19 causing inflammation and micro-thrombi: Inhibitory effect of the IL-1 receptor antagonist (IL-1Ra). J Biol Regul Homeost Agents. 2020; 34(5):1623-7. [DOI:10.23812/20-34-4EDIT-65] [PMID]
  28. Liu Y, Du X, Chen J, Jin Y, Peng L, Wang HH, et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect. 2020; 81(1):e6-12. [DOI:10.1016/j.jinf.2020.04.002] [PMID] [PMCID]
  29. Amanat F, Stadlbauer D, Strohmeier Sh, Nguyen THO, Chromikova V, McMahon M, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med. 2020; 26:1033-6. [DOI:10.1038/s41591-020-0913-5]
  30. Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020; 17(5):533-5. [DOI:10.1038/s41423-020-0402-2] [PMID] [PMCID]
  31. Feng Z, Diao B, Wang R, Wang G, Wang Ch, Tan Y, et al. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes. medRxiv. 2020; March. [DOI:10.1101/2020.03.27.20045427]
  32. Wan S, Yi Q, Fan Sh, Lv J, Zhang X, Guo L, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 Novel Coronavirus Pneumonia (NCP). medRxiv. 2020; February. [DOI:10.1101/2020.02.10.20021832]
  33. Ni L, Ye F, Cheng ML, Feng Y, Deng YQ, Zhao H, et al. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity. 2020; 52(6):971-7.E3. [DOI:10.1016/j.immuni.2020.04.023] [PMID] [PMCID]
  34. Weiskopf D, Schmitz KS, Raadsen MP, Grifoni A, Okba NMA, Endeman H, et al. Phenotype of SARS-CoV-2-specific T-cells in COVID-19 patients with acute respiratory distress syndrome. medRxiv. 2020; May. [DOI:10.1101/2020.04.11.20062349]
  35. Braun J, Loyal L, Frentsch M, Wendisch D, Georg P, Kurth F, et al. Presence of SARS-CoV-2 reactive T cells in COVID-19 patients and healthy donors. medRxiv. 2020; April. [DOI:10.1101/2020.04.17.20061440]
  36. Diao B, Wang Ch, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol. 2020; 11:827. [DOI:10.3389/fimmu.2020.00827] [PMID] [PMCID]
  37. Zhou Y, Fu B, Zheng X, Wang D, Zhao Ch, Qi Y, et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl Sci Rev. 2020; 7(6):998-1002. [DOI:10.1093/nsr/nwaa041] [PMCID]
  38. Li X, Geng M, Peng Y, Meng L, Lu Sh. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020; 10(2):102-8. [DOI:10.1016/j.jpha.2020.03.001] [PMID] [PMCID]
  39. Prompetchara E, Ketloy Ch, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020; 38(1):1-9. [DOI:10.12932/AP-200220-0772] [PMID]
  40. Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, Yang XP, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020; 17(5):541-3. [DOI:10.1038/s41423-020-0401-3] [PMID] [PMCID]
  41. Huang AT, Garcia-Carreras B, Hitchings MDT, Yang B, Katzelnick LC, Rattigan SM, et al. A systematic review of antibody mediated immunity to coronaviruses: Antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. medRxiv. 2020; April. [DOI:10.1101/2020.04.14.20065771]
  42. Totura AL, Baric RS. SARS coronavirus pathogenesis: Host innate immune responses and viral antagonism of interferon. Curr Opin Virol. 2012; 2(3):264-75. [DOI:10.1016/j.coviro.2012.04.004] [PMID] [PMCID]
  43. Ju B, Zhang Q, Ge X, Wang R, Yu J, Shan S, et al. Potent human neutralizing antibodies elicited by SARS-CoV-2 infection. bioRxiv. 2020; March. [DOI:10.1101/2020.03.21.990770]
  44. Wu F, Wang A, Liu M, Wang Q, Chen J, Xia Sh, et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv. 2020; April. [DOI:10.1101/2020.03.30.20047365]
  45. Adams E, Ainsworth M, Anand R, Andersson MI, Auckland K, Kenneth Baillie J, et al. Evaluation of antibody testing for SARS-Cov-2 using ELISA and lateral flow immunoassays. medRxiv. 2020; April. [DOI:10.1101/2020.04.15.20066407]
  46. Okba NMA, Müller MA, Li W, Wang Ch, GeurtsvanKessel CH, Corman VM, et al. SARS-CoV-2 specific antibody responses in COVID-19 patients. medRxiv. 2020; March. [DOI:10.1101/2020.03.18.20038059]
  47. Taylor A, Foo SS, Bruzzone R, Vu Dinh L, King NJC, Mahalingam S. Fc receptors in antibody-dependent enhancement of viral infections. Immunol Rev. 2015; 268(1):340-64. [DOI:10.1111/imr.12367] [PMID] [PMCID]
  48. Quinlan BD, Mou H, Zhang L, Guo Y, He W, Ojha A, et al. The SARS-CoV-2 receptor-binding domain elicits a potent neutralizing response without antibody-dependent enhancement. bioRxiv. 2020; April. [DOI:10.1101/2020.04.10.036418]
  49. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med. 2020; 8(5):475-81. [DOI:10.1016/S2213-2600(20)30079-5]
  50. Parsons PE, Eisner MD, Taylor Thompson B, Matthay MA, Ancukiewicz M, Bernard GR, et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005; 33(1):1-6. [DOI:10.1097/01.CCM.0000149854.61192.DC] [PMID]
  51. Centers for Disease Control and Prevention (CDC). Coronavirus disease 2019 (COVID-19) [Internet]. 2020 [Updated 2020]. Available from: https://www.cdc.gov/dotw/covid-19/index.html
  52. Jawerth N. How is the COVID-19 virus detected using Real Time RT-PCR? [Internet]. 2020 [Updated 2020]. Available from: https://www.iaea.org/newscenter/news/how-is-the-covid-19-virus-detected-using-real-time-rt-pcr
  53. Centers for Disease Control and Prevention (CDC). Real-Time RT-PCR panel for detection 2019-nCoV [Internet]. 2020 [Updated 2020 April 25]. Available from: Not Found Link.
  54. Martina A, Drosten Ch. Coronavirus-update: Folge 22 [Internet]. 2020 [Updated 2020 March 26]. Available from: https://www.ndr.de/nachrichten/info/coronaskript146.pdf [In German]
  55. Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020; 38(7):870-4. [DOI:10.1038/s41587-020-0513-4] [PMID]
  56. Smithgall MC, Scherberkova I, Whittier S, Green DA. Comparison of Cepheid Xpert Xpress and Abbott ID now to Roche cobas for the rapid detection of SARS-CoV-2. J Clin Virol. 2020; 128:104428. [DOI:10.1016/j.jcv.2020.104428] [PMID] [PMCID]
  57. World Health Organization. SARS-CoV-2 Antigen detecting rapid diagnostic test implementation projects [Internet]. 2020 [Updated 2020 November 17]. Available from: https://www.who.int/news-room/articles-detail/sars-cov-2-antigen-detecting-rapid-diagnostic-test-implementation-projects
  58. Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A. Coronavirus disease 2019 (COVID-19): A systematic review of imaging findings in 919 patients. AJR Am J Roentgenol. 2020; 215(1):87-93. [DOI:10.2214/AJR.20.23034] [PMID]
  59. Loeffelholz MJ, Tang YW. Laboratory diagnosis of emerging human coronavirus infections - the state of the art. Emerg Microbes Infect. 2020; 9(1):747-56. [DOI:10.1080/22221751.2020.1745095] [PMID] [PMCID]
  60. Johns Hopkins Center for Health Security. Serology-basedtests for COVID-19 [Internet]. 2020 [Updated 2020 April 18]. Available from: Not Found Link
  61. Lequin RM. Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA). Clin Chem. 2005; 51(12):2415-8. [DOI:10.1373/clinchem.2005.051532] [PMID]
  62. Johns Hopkins Center for Health Security. Serology tests for COVID-19. COVID-19 testing toolkit [Internet]. 2021 [Updated 2021 April 26]. Available from: Not Found Link
  63. Carter LJ, Garner LV, Smoot JW, Li Y, Zhou Q, Saveson CJ, et al. Assay techniques and test development for COVID-19 diagnosis. ACS Cent Sci. 2020; 6(5):591-605. [DOI:10.1021/acscentsci.0c00501] [PMID] [PMCID]
  64. Healagen. COVID-19 IgG/IgM rapid test cassette [Internet]. 2020 [Updated 2020]. Available from: https://www.fda.gov/media/138438/download
  65. Postnikova EN, Pettitt J, Van Ryn CJ, Holbrook MR, Bollinger L, Yú Sh, et al. Scalable, semi-automated fluorescence reduction neutralization assay for qualitative assessment of Ebola virus-neutralizing antibodies in human clinical samples. PloS One. 2019; 14(8):e0221407. [DOI:10.1371/journal.pone.0221407] [PMID] [PMCID]
  66. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004; 104(6):3003-36. [DOI:10.1021/cr020373d] [PMID]
  67. Huang Y, Yang R, Xu Y, Gong P. Clinical characteristics of 36 non-survivors with COVID-19 in Wuhan, China. medRxiv. 2020; March. [DOI:10.1101/2020.02.27.20029009]
  68. Yan L, Zhang HT, Xiao Y, Wang M, Sun C, Liang J, et al. Prediction of criticality in patients with severe Covid-19 infection using three clinical features: A machine learning-based prognostic model with clinical data in Wuhan. medRxiv. 2020; March. [DOI:10.1101/2020.02.27.20028027]
  69. Xiang J, Wen J, Yuan X, Xiong Sh, Zhou X, Liu Ch, et al. Potential biochemical markers to identify severe cases among COVID-19 patients. medRxiv. 2020; March. [DOI:10.1101/2020.03.19.20034447]
  70. Yang Y, Shen Ch, Li J, Yuan J, Wei J, Huang F, et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J Allergy Clin Immunol. 2020; 146(1):119-27.E4. [DOI:10.1016/j.jaci.2020.04.027] [PMID] [PMCID]
  71. Chen X, Zhao B, Qu Y, Chen Y, Xiong J, Feng Y, et al. Detectable serum severe acute respiratory syndrome coronavirus 2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 level in critically Ill patients with coronavirus disease 2019. Clin Infect Dis. 2020; 71(8):1937-42. https://academic.oup.com/cid/article/71/8/1937/5821311
  72. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Zh, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020; 395(10229):1054-62. [DOI:10.1016/S0140-6736(20)30566-3]
  73. Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J Infect. 2020; 80(6):e14-e8. [DOI:10.1016/j.jinf.2020.03.005] [PMID] [PMCID]
  74. Tan L, Kang X, Ji X, Li G, Wang Q, Li Y, et al. Validation of predictors of disease severity and outcomes in COVID-19 patients: A descriptive and retrospective study. Med. 2020; 1(1):128-38.E3. [DOI:10.1016/j.medj.2020.05.002] [PMID] [PMCID]
  75. Brody B. Prednisone and coronavirus: Do corticosteroids make you immunosuppressed and higher risk for COVID-19? [Internet]. 2020 [Updated 2020]. Available from: https://creakyjoints.org/living-with-arthritis/coronavirus/treatments/prednisone-steroids-immunosuppressing-coronavirus/
  76. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A. 2020; 117(20):10970-5. [DOI:10.1073/pnas.2005615117] [PMID] [PMCID]
  77. Rutherford AI, Subesinghe S, Hyrich KL, Galloway JB. Serious infection across biologic-treated patients with rheumatoid arthritis: Results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Ann Rheum Dis. 2018; 77(6):905-10. [DOI:10.1136/annrheumdis-2017-212825] [PMID]
  78. Menon A, Rajendran NK, Chandrachud A, Setlur G. Modelling and simulation of COVID-19 propagation in a large population with specific reference to India. medRxiv. 2020; May. [DOI:10.1101/2020.04.30.20086306]
  79. Price KN, Frew JW, Hsiao JL, Shi VY. COVID-19 and immunomodulator/immunosuppressant use in dermatology. J Am Acad Dermatol. 2020; 82(5):E173-5. [DOI:10.1016/j.jaad.2020.03.046] [PMID] [PMCID]
  80. King A, Vail A, O’Leary C, Hannan C, Brough D, Patel H, et al. Anakinra in COVID-19: Important considerations for clinical trials. Lancet Rheumatol. 2020; 2(7):E379-81. [DOI:10.1016/S2665-9913(20)30160-0]
  81. Sheng CC, Sahoo D, Dugar S, Prada RA, Wang TKM, Abou Hassan OK, et al. Canakinumab to reduce deterioration of cardiac and respiratory function in SARS-CoV-2 associated myocardial injury with heightened inflammation (canakinumab in Covid-19 cardiac injury: The three C study). Clin Cardiol. 2020; 43(10):1055-63. [DOI:10.1002/clc.23451] [PMID] [PMCID]
  82. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020; 395(10223):E30-1. [DOI:10.1016/S0140-6736(20)30304-4]
  83. Sterner RM, Sakemura R, Cox MJ, Yang N, Khadka RH, Forsman CL, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood. 2019; 133(7):697-709. [DOI:10.1182/blood-2018-10-881722] [PMID] [PMCID]
  84. Calabrese LH. Molecular differences in anticytokine therapies. Clin Exp Rheumatol. 2003; 21(2):241-8. [PMID]
  85. Rizk JG, Kalantar-Zadeh K, Mehra MR, Lavie CJ, Rizk Y, Forthal DN. Pharmaco-immunomodulatory therapy in COVID-19. Drugs. 2020; 80(13):1267-92. [DOI:10.1007/s40265-020-01367-z] [PMID] [PMCID]
  86. Pulido JD, Ahmed O, Rasool R, Chappell G, Durrant C, Chappell D. COVID-19 associated chronic ARDS successfully treated with lenzilumab [Internet]. 2020 [Updated 2020 October 1]. Available from: https://osf.io/xusr9/ [DOI:10.31219/osf.io/xusr9]
  87. Borcherding N, Jethava Y, Vikas P. Repurposing anti-cancer drugs for COVID-19 treatment. Drug Des Devel Ther. 2020; 14:5045-58. [DOI:10.2147/DDDT.S282252] [PMID] [PMCID]
  88. Uccelli A, de Rosbo NK. The immunomodulatory function of mesenchymal stem cells: Mode of action and pathways. Ann N Y Acad Sci. 2015; 1351:114-26. [DOI:10.1111/nyas.12815] [PMID]
  89. Chen J, Hu Ch, Chen L, Tang L, Zhu Y, Xu X, et al. Clinical study of mesenchymal stem cell treating acute respiratory distress syndrome induced by epidemic influenza A (H7N9) infection: A hint for COVID-19 treatment. Engineering. 2020; 6(10):1153-61. [DOI:10.1016/j.eng.2020.02.006] [PMID] [PMCID]
  90. Liang B, Chen J, Li T, Wu H, Yang W, Li Y, et al. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells: A case report. Medicine. 2020; 99(31):e21429. [DOI:10.1097/MD.0000000000021429] [PMID] [PMCID]
  91. Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020; 11(2):216-28. [DOI:10.14336/AD.2020.0228] [PMID] [PMCID]
  92. Bari E, Ferrarotti I, Saracino L, Perteghella S, Torre ML, Corsico AG. Mesenchymal stromal cell secretome for severe COVID-19 infections: Premises for the therapeutic use. Cells. 2020; 9(4):924. [DOI:10.3390/cells9040924] [PMID] [PMCID]
  93. Raza SS, Khan MA. Mesenchymal Stem Cells: A new front emerge in COVID19 treatment: Mesenchymal Stem Cells therapy for SARS-CoV2 viral infection. Cytotherapy. 2020; July. [DOI:10.1016/j.jcyt.2020.07.002] [PMCID]
  94. Jewett A, Kos J, Kaur K, Safaei T, Sutanto Ch, Chen W, et al. Natural killer cells: Diverse functions in tumor immunity and defects in pre-neoplastic and neoplastic stages of tumorigenesis. Mol Ther Oncolytics. 2020; 16:41-52. [DOI:10.1016/j.omto.2019.11.002] [PMID] [PMCID]
  95. Kaur K, Nanut MP, Ko MW, Safaie T, Kos J, Jewett A. Natural killer cells target and differentiate cancer stem-like cells/undifferentiated tumors: Strategies to optimize their growth and expansion for effective cancer immunotherapy. Curr Opin Immunol. 2018; 51:170-80. [DOI:10.1016/j.coi.2018.03.022] [PMID]
  96. Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov. 2020; 19(3):200-18. [DOI:10.1038/s41573-019-0052-1] [PMID]
  97. Fujisaki H, Kakuda H, Shimasaki N, Imai Ch, Ma J, Lockey T, et al. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res. 2009; 69(9):4010-7. [DOI:10.1158/0008-5472.CAN-08-3712] [PMID] [PMCID]
  98. Seay K, Church C, Zheng JH, Deneroff K, Ochsenbauer Ch, Kappes JC, et al. In vivo activation of human NK cells by treatment with an interleukin-15 superagonist potently inhibits acute in vivo HIV-1 infection in humanized mice. J Virol. 2015; 89(12):6264-74. [DOI:10.1128/JVI.00563-15] [PMID] [PMCID]
  99. Thomé R, Moraes AS, Bombeiro AL, dos Santos Farias A, Francelin C, da Costa TA, et al. Chloroquine treatment enhances regulatory T cells and reduces the severity of experimental autoimmune encephalomyelitis. PloS One. 2013; 8(6):e65913. [DOI:10.1371/journal.pone.0065913] [PMID] [PMCID]
  100. Wozniacka A, Lesiak A, Narbutt J, McCauliffe DP, Sysa-Jedrzejowska A. Chloroquine treatment influences proinflammatory cytokine levels in systemic lupus erythematosus patients. Lupus. 2006; 15(5):268-75. [DOI:10.1191/0961203306lu2299oa] [PMID]
  101. Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat Rev Rheumatol. 2020; 16(3):155-66. [DOI:10.1038/s41584-020-0372-x] [PMID]
  102. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020; 56(1):105949. [DOI:10.1016/j.ijantimicag.2020.105949] [PMID] [PMCID]
  103. Chen Zh, Hu J, Zhang Z, Jiang Sh, Han Sh, Yan D, et al. Efficacy of hydroxychloroquine in patients with COVID-19: Results of a randomized clinical trial. medRxiv. 2020; March. [DOI:10.1101/2020.03.22.20040758]
  104. Borba MGS, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, Brito M, et al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: A randomized clinical trial. JAMA Netw Open. 2020; 3(4):e208857. [DOI:10.1001/jamanetworkopen.2020.8857] [PMID]
  105. Shamshirian A, Hessami AH, Heydari K, Alizadeh-Navaei R, Ebrahimzadeh MA, Yip GW, et al. Hydroxychloroquine versus COVID-19: A periodic systematic review and meta-analysis. medRxiv. 2020; May. [DOI:10.1101/2020.04.14.20065276]
  106. Rödel F, Frey B, Gaipl U, Keilholz L, Fournier C, Manda K, et al. Modulation of inflammatory immune reactions by low-dose ionizing radiation: Molecular mechanisms and clinical application. Curr Med Chem. 2012; 19(12):1741-50. [DOI:10.2174/092986712800099866] [PMID]
  107. Algara M, Arenas M, Marin J, Vallverdu I, Fernandez-Letón P, Villar J, et al. Low dose anti-inflammatory radiotherapy for the treatment of pneumonia by covid-19: A proposal for a multi-centric prospective trial. Clin Transl Radiat Oncol. 2020; 24:29-33. [DOI:10.1016/j.ctro.2020.06.005] [PMID] [PMCID]
Type of Study: Review article | Subject: Immunology

Add your comments about this article : Your username or Email:

Send email to the article author

© 2021 CC BY-NC 4.0 | Journal of Inflammatory Diseases

Designed & Developed by : Yektaweb