Volume 25, Issue 2 (Summer 2021)                   2021, 25(2): 99-104 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salehi M, Shariatifar H, Ghanbari Johkool M, Farasat A. A Comprehensive Study of Human Serum Albumin Interaction With Trimethoprim Using Molecular Docking and Molecular Dynamics Methods: An Appropriate Tool for Drug Delivery Systems. Journal of Inflammatory Diseases. 2021; 25 (2) :99-104
URL: http://journal.qums.ac.ir/article-1-3231-en.html
1- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran.
2- Health Products Safety Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
3- Metabolic Diseases Research Center, Research Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
4- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran. , a.farasat@qums.ac.ir
Abstract:   (1832 Views)
Background: Human Serum Albumin (HSA) is one of the most prominent proteins in human blood. Trimethoprim (TMP) is an efficient antibiotic drug for treating pneumocystis pneumonia. Patients with HIV/AIDS and cancer are highly affected by this disease due to immune system deficiency. 
Objective: This study aims to evaluate the Molecular Dynamics (MD) simulation of HSA with TMP for drug delivery systems. 
Methods: In the first step, the 3D structure of HSA and TMP were determined by PDB (Protein Data Bank) and PubChem, respectively. Then, the molecular docking was done via AutoDock Vina software, and the best complex was selected based on the lowest binding energy. Finally, the structural characteristics of the above complex were evaluated. 
Results:  The results showed that TMP binds to the HSA molecule with a binding energy of -7.3 kcal/mol, and this binding causes changes in the third and second structures of the HSA. Thus, Root-Mean-Square Deviation (RMSD) and radius of gyration results proved the third structural change, and the results obtained from DSSP (Database of Secondary Structure assignment for all Protein entries) confirmed the second structural modification. The TMP-HSA complex formation is accompanied by hydrophobic interaction between residues of Tyr150, Ala291, His288, Leu238, Leu219, Lys199, Lys195, Glu153, and TMP. The TMP molecule had two hydrogen bonds with Arg222 residue and three with Ser192. Furthermore, the final PDB file of the MD simulation process showed that the TMP molecule reacted with HSA (IIA chain). 
Conclusion: Because of the extensive application of TMP in infectious diseases and appropriate interaction with HSA, the complex could be used for the purposeful transport of nanoparticles in the future.
Full-Text [PDF 1126 kb]   (126 Downloads) |   |   Full-Text (HTML)  (55 Views)  
Type of Study: Research | Subject: Pharmacology

References
1. Cheng LY, Fang M, Bai AM, Ouyang Y, Hu YJ. Insights into the interaction of methotrexate and human serum albumin: A spectroscopic and molecular modeling approach. Luminescence. 2017;32(5):873-9. [DOI:10.1002/bio.3267] [PMID]
2. Yang M, Hoppmann S, Chen L, Cheng Z. Human serum albumin conjugated biomolecules for cancer molecular imaging. Current pharmaceutical design. 2012;18(8):1023-31. [DOI:10.2174/138161212799315830] [PMID]
3. Chaudhury C, Mehnaz S, Robinson JM, Hayton WL, Pearl DK, Roopenian DC, et al. The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. Journal of Experimental Medicine. 2003;197(3):315-22. [DOI:10.1084/jem.20021829] [PMID] [PMCID]
4. Rabbani G, Ahn SN. Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. International journal of biological macromolecules. 2019;123:979-90. [DOI:10.1016/j.ijbiomac.2018.11.053] [PMID]
5. Sun X, Bi S, Wu J, Zhao R, Shao D, Song Z. Multispectral and molecular docking investigations on the interaction of primethamine/trimethoprim with BSA/HSA. Journal of Biomolecular Structure and Dynamics. 2020;38(3):934-42. [DOI:10.1080/07391102.2019.1588785] [PMID]
6. Wu J, Bi S-Y, Sun X-Y, Zhao R, Wang J-H, Zhou H-F. Study on the interaction of fisetholz with BSA/HSA by multi-spectroscopic, cyclic voltammetric, and molecular docking technique. Journal of Biomolecular Structure and Dynamics. 2019;37(13):3496-505. [DOI:10.1080/07391102.2018.1518789] [PMID]
7. Komatsu T, Nakagawa A, Curry S, Tsuchida E, Murata K, Nakamura N, et al. The role of an amino acid triad at the entrance of the heme pocket in human serum albumin for O 2 and CO binding to iron protoporphyrin IX. Organic & biomolecular chemistry. 2009;7(18):3836-41. [DOI:10.1039/b909794e] [PMID]
8. Rimac H, Debeljak Ž, Miller L. Displacement of drugs from human serum albumin: from molecular interactions to clinical significance. Current medicinal chemistry. 2017;24(18):1930-47. [DOI:10.2174/0929867324666170202152134] [PMID]
9. di Masi A, Leboffe L, Polticelli F, Tonon F, Zennaro C, Caterino M, et al. Human serum albumin is an essential component of the host defense mechanism against Clostridium difficile intoxication. The Journal of infectious diseases. 2018;218(9):1424-35. [DOI:10.1093/infdis/jiy338] [PMID]
10. Shi H, Cheng Q, Yuan S, Ding X, Liu Y. Human serum albumin conjugated nanoparticles for pH and redox‐responsive delivery of a prodrug of cisplatin. Chemistry-A European Journal. 2015;21(46):16547-54. [DOI:10.1002/chem.201502756] [PMID]
11. Westfall S, Farahdel L, Prakash S, Lomis N, Malhotra M, Shum-Tim D. Human Serum Albumin Nanoparticles for Use in Cancer Drug Delivery: Process Optimization and In Vitro Characterization. Nanomaterials (2079-4991). 2016;6(6). [DOI:10.3390/nano6060116] [PMID] [PMCID]
12. Alex SA, Chakraborty D, Chandrasekaran N, Mukherjee A. A comprehensive investigation of the differential interaction of human serum albumin with gold nanoparticles based on the variation in morphology and surface functionalization. RSC advances. 2016;6(58):52683-94. [DOI:10.1039/C6RA10506H]
13. Li P, Gu H, Zhang J. Characterization of the interaction of 6-thioguanine with human serum albumin by surface-enhanced Raman scattering and molecular modeling. Analytical Letters. 2015;48(13):2063-74. https://doi.org/10.1080/00032719.2015.1017766 [DOI:10.1080/00032719.2015.1130714]
14. Masur H, Brooks JT, Benson CA, Holmes KK, Pau AK, Kaplan JE. Prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: Updated Guidelines from the Centers for Disease Control and Prevention, National Institutes of Health, and HIV Medicine Association of the Infectious Diseases Society of America. Clinical infectious diseases. 2014;58(9):1308-11. [DOI:10.1093/cid/ciu094] [PMID] [PMCID]
15. Darrell J, Garrod L, Waterworth PM. Trimethoprim: laboratory and clinical studies. Journal of Clinical Pathology. 1968;21(2):202. [DOI:10.1136/jcp.21.2.202] [PMID] [PMCID]
16. Grose WE, Bodey GP, Rodriguez V. Sulfamethoxazole-trimethoprim for infections in cancer patients. JAMA. 1977;237(4):352-4. https://doi.org/10.1001/jama.237.4.352 [DOI:10.1001/jama.1977.03270310036004] [PMID]
17. Mizrak D, Kalkan EA, Alkan A, Yerlikaya H, Koksoy EB, Karci E, et al. An unexpected cause of hyponatremia in a cancer patient: Trimethoprim-sulfamethoxazole. Journal of Oncological Science. 2016;2(1):27-8. [DOI:10.1016/j.jons.2016.04.005]
18. Hospital A, Goñi JR, Orozco M, Gelpí JL. Molecular dynamics simulations: advances and applications. Advances and applications in bioinformatics and chemistry: AABC. 2015;8:37. [DOI:10.2147/AABC.S70333] [PMID] [PMCID]
19. Hanai T, Koseki A, Yoshikawa R, Ueno M, Kinoshita T, Homma HJAca. Prediction of human serum albumin-drug binding affinity without albumin. 2002;454(1):101-8. [DOI:10.1016/S0003-2670(01)01515-X]
20. Trott O, Olson AJJJocc. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. 2010;31(2):455-61. [DOI:10.1002/jcc.21334] [PMID] [PMCID]
21. Lindahl E, Hess B, Van Der Spoel D. GROMACS 3.0: a package for molecular simulation and trajectory analysis. Molecular modeling annual. 2001;7(8):306-17. [DOI:10.1007/s008940100045]
22. Schüttelkopf AW, Van Aalten DM. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D: Biological Crystallography. 2004;60(8):1355-63. [DOI:10.1107/S0907444904011679] [PMID]
23. van Gunsteren WF, Daura X, Mark AE. GROMOS force field. Encyclopedia of computational chemistry. 2002;2. [DOI:10.1002/0470845015.cga011]
24. Farasat A, Rahbarizadeh F, Hosseinzadeh G, Sajjadi S, Kamali M, Keihan AH. Affinity enhancement of nanobody binding to EGFR: in silico site-directed mutagenesis and molecular dynamics simulation approaches. Journal of biomolecular structure and dynamics. 2017;35(8):1710-28. [DOI:10.1080/07391102.2016.1192065] [PMID]
25. Kaur G, Pandey B, Kumar A, Garewal N, Grover A, Kaur JJJoBS, et al. Drug targeted virtual screening and molecular dynamics of LipU protein of Mycobacterium tuberculosis and Mycobacterium leprae. 2019;37(5):1254-69. [DOI:10.1080/07391102.2018.1454852] [PMID]
26. Gheibi N, Ghorbani M, Shariatifar H, Farasat AJPo. In silico assessment of human Calprotectin subunits (S100A8/A9) in presence of sodium and calcium ions using Molecular Dynamics simulation approach. 2019;14(10):e0224095. [DOI:10.1371/journal.pone.0224095] [PMID] [PMCID]
27. Cao C, Wang G, Liu A, Xu S, Wang L, Zou SJIjoms. A new secondary structure assignment algorithm using cα backbone fragments. 2016;17(3):333. [DOI:10.3390/ijms17030333] [PMID] [PMCID]
28. Stourac J, Vavra O, Kokkonen P, Filipovic J, Pinto G, Brezovsky J, et al. Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. 2019;47(W1):W414-W22. [DOI:10.1093/nar/gkz378] [PMID] [PMCID]
29. Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. ACS Publications; 2011. [DOI:10.1021/ci200227u] [PMID]
30. Bijari N, Moradi S, Ghobadi S, Shahlaei MJRips. Elucidating the interaction of letrozole with human serum albumin by combination of spectroscopic and molecular modeling techniques. 2018;13(4):304. [DOI:10.4103/1735-5362.235157] [PMID] [PMCID]
31. Mohseni-Shahri FS, Housaindokht MR, Bozorgmehr MR, Moosavi-Movahedi AA. Studies of interaction between propranolol and human serum albumin in the presence of DMMP by molecular spectroscopy and molecular dynamics simulation. Biomacromolecular Journal. 2015;1(2):154-66.
32. Cao C, Wang G, Liu A, Xu S, Wang L, Zou S. A new secondary structure assignment algorithm using cα backbone fragments. International journal of molecular sciences. 2016;17(3):333. [DOI:10.3390/ijms17030333] [PMID] [PMCID]
33. Usoltsev D, Sitnikova V, Kajava A, Uspenskaya M. FTIR spectroscopy study of the secondary structure changes in human serum albumin and trypsin under neutral salts. Biomolecules. 2020; [DOI:10.3390/biom10040606] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Inflammatory Diseases

Designed & Developed by : Yektaweb