Volume 22, Issue 4 (Oct - Nov 2018)                   2018, 22(4): 83-99 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ebrahimikia Y, Darabi S, Rajaei F. Roles of stem cells in the treatment of Parkinson's disease. Journal of Inflammatory Diseases. 2018; 22 (4) :83-99
URL: http://journal.qums.ac.ir/article-1-2618-en.html
1- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
2- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran , shahram2005d@yahoo.com
3- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
Abstract:   (4729 Views)
Stem cells are undifferentiated cells with the ability to divide and differentiate into distinct cell types. The source of these cells is from embryos and adults, that each cell has its own specific characteristics. For nearly decades, experimental studies have been conducted to use these types of cells to treat various diseases. Parkinson's disease is one of the most common neurodegenerative diseases, resulting in a deficiency of dopaminergic neurons. Therefore, we study the role of stem cell therapies in the treatment of Parkinson's disease. Initially, 73 relevant articles selected from valid databases such as ISC, SID, Google Scholar and PubMed and the role of each type of stem cell in the treatment of Parkinson's disease was collected. Stem cells can be used in experimental studies regard to the unique characteristics and using different laboratory agents for any particular type of cells. Stem cells can provide an unlimited source of dopaminergic neurons for transplantation and improve motor behavior and symptoms of Parkinson's disease Study and comparison of different types of stem cells refer to the more effective role of neural and umbilical stem cells in treating Parkinson's disease.
Full-Text [PDF 279 kb]   (2337 Downloads)    
Type of Study: Review article | Subject: Cognitive Neuroscience

1. Foster ER, Black KJ, Antenor-Dorsey JA, Perlmutter JS, Hershey T. Motor asymmetry and substantia nigra volume are related to spatial delayed response performance in Parkinson's disease. Brain Cogn 2008; 67(1): 1-10. doi: 10.1016/j.bandc.2007.10.002. [PubMed]
2. Faghihi A, Joghataie MT, Darabi S, Mehdizadeh M, Roghani M, Bakhtiari M. Evaluation of behavioral effects of trans-resveratrol in the hemi parkinsonian rat model. J Iranian Anatomical Sciences 2007; 5(19): 107-14.
3. Rangel-Barajas C, Coronel I, Florán B. Dopamine receptors and neurodegeneration. Aging Dis 2015; 6(5): 349-68. doi: 10.14336/ AD.2015.0330. [PubMed]
4. Zhang J, Wang X, Li J, Huang R, Yu X, Dong C, et al. The Preclinical research progress of stem cells therapy in Parkinson's disease. Biomed Res Int 2016; 2016: 5683097. [DOI] [PubMed]
5. Jankovic J. Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008; 79(4): 368-76. doi: 10.1136/jnnp.2007. 131045. [PubMed]
6. Shams Nooraei M, Noori-Zadeh A, Darabi S, Rajaei F, Golmohammadi Z, Abbaszadeh HA. Low level of autophagy-related gene 10 (ATG10) expression in the 6-Hydroxydopamine rat model of Parkinson's disease. Iran Biomed J 2018; 22(1): 15-21. doi: 10.22034/ibj.22.1.15. [PubMed]
7. Choi H, Koh SH. Understanding the role of glycogen synthase kinase-3 in L-DOPA-induced dyskinesia in Parkinson's disease. Expert Opin Drug Metab Toxicol 2018; 14(1): 83-90. [DOI] [PubMed]
8. Darabi S, Tiraihi T, Delshad A, Sadeghizadeh M, Khalil W, Taheri T. In vitro non-viral murine pro-neurotrophin 3 gene transfer into rat bone marrow stromal cells. J Neurol Sci 2017; 375: 137-45. [DOI]
9. Morizane A, Takahashi J. Cell therapy for Parkinson's disease. Nihon Yakurigaku Zasshi 2016; 147(5): 264-8. [DOI] [PubMed]
10. Cho MS, Hwang DY, Kim DW. Efficient derivation of functional dopaminergic neurons from human embryonic stem cells on a large scale. Nat Protoc 2008; 3(12): 1888-94. doi: 10.1038/nprot.2008.188. [PubMed]
11. Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci 2018; 15(1): 36-45. [DOI] [PubMed]
12. Sanchez-Pernaute R, Studer L, Ferrari D, Perrier A, Lee H, Vinuela A, et al. Long-term survival of dopamine neurons derived from parthenogenetic primate embryonic stem cells (cyno-1) after transplantation. Stem Cells 2005; 23(7): 914-22. [DOI] [PubMed]
13. Brundin P, Nilsson OG, Gage FH, Björklund A. Cyclosporin A increases survival of cross-species intrastriatal grafts of embryonic dopamine-containing neurons. Exp Brain Res 1985; 60(1): 204-8. [DOI] [PubMed]
14. Larsson LC, Frielingsdorf H, Mirza B, Hansson SJ, Anderson P, Czech KA, et al. Porcine neural xenografts in rats and mice: donor tissue development and characteristics of rejection. Exp Neurol 2001; 172(1): 100-14. [DOI] [PubMed]
15. Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, et al. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 2005; 115(1): 102-9. [DOI] [PubMed]
16. Itoh N, Ohta H. Roles of FGF20 in dopaminergic neurons and Parkinson's disease. Front Mol Neurosci 2013; 6: 15. [DOI] [PubMed]
17. Hedlund E, Pruszak J, Ferree A, Vinuela A, Hong S, Isacson O, et al. Selection of embryonic stem cell-derived enhanced green fluorescent protein-positive dopamine neurons using the tyrosine hydroxylase promoter is confounded by reporter gene expression in immature cell populations. Stem Cells 2007; 25(5): 1126-35. [DOI] [PubMed]
18. Hong S, Chung S, Leung K, Hwang I, Moon J, Kim KS. Functional roles of Nurr1, Pitx3, and Lmx1a in neurogenesis and phenotype specification of dopamine neurons during in vitro differentiation of embryonic stem cells. Stem Cells Dev 2014; 23(5): 477-87. [DOI] [PubMed]
19. Tatard VM, Sindji L, Branton JG, Aubert-Pouessel A, Colleau J, Benoit JP, et al. Pharmacologically active microcarriers releasing glial cell line - derived neurotrophic factor: Survival and differentiation of embryonic dopaminergic neurons after grafting in hemiparkinsonian rats. Biomaterials 2007; 28(11): 1978-88. [DOI] [PubMed]
20. Espejo M, Cutillas B, Arenas TE, Ambrosio S. Increased survival of dopaminergic neurons in striatal grafts of fetal ventral mesencephalic cells exposed to neurotrophin-3 or glial cell line-derived neurotrophic factor. Cell Transplant 2000; 9(1): 45-53. [DOI] [PubMed]
21. Perez-Bouza A, Di Santo S, Seiler S, Meyer M, Andereggen L, Huber A, et al. Simultaneous transplantation of fetal ventral mesencephalic tissue and encapsulated genetically modified cells releasing GDNF in a hemi-parkinsonian rat model of Parkinson's disease. Cell Transplant 2017; 26(9): 1572-81. [DOI] [PubMed]
22. Preynat-Seauve O, de Rham C, Tirefort D, Ferrari-Lacraz S, Krause KH, Villard J. Neural progenitors derived from human embryonic stem cells are targeted by allogeneic T and natural killer cells. J Cell Mol Med 2009; 13(9B): 3556-69. [DOI] [PubMed]
23. Mirza B, Krook H, Andersson P, Larsson LC, Korsgren O, Widner H. Intracerebral cytokine profiles in adult rats grafted with neural tissue of different immunological disparity. Brain Res Bull 2004; 63(2): 105-18. [DOI] [PubMed]
24. Spenger C, Haque NS, Studer L, Evtouchenko L, Wagner B, Bühler B, et al. Fetal ventral mesencephalon of human and rat origin maintained in vitro and transplanted to 6-hydroxydopamine-lesioned rats gives rise to grafts rich in dopaminergic neurons. Exp Brain Res 1996; 112(1): 47-57. [DOI] [PubMed]
25. Kurowska Z, Englund E, Widner H, Lindvall O, Li J-Y, Brundin P. Signs of degeneration in 12–22-year old grafts of mesencephalic dopamine neurons in patients with Parkinson's disease. J Parkinsons Dis 2011; 1(1): 83-92. doi: 10.3233/JPD-2011-11004. [PubMed]
26. Seghatoleslam M, Hosseini M. Potential of stem cells in the treatment of nervous system disorders. Shefaye Khatam 2015; 3(1): 99-114 . [In Persian] [DOI]
27. Barachini S, Trombi L, Danti S, D'Alessandro D, Battolla B, Legitimo A, et al. Morpho-functional characterization of human mesenchymal stem cells from umbilical cord blood for potential uses in regenerative medicine. Stem Cells Dev 2009; 18(2): 293-305. [DOI] [PubMed]
28. Abd Elhalem SS, Haggag NZ, El-Shinnawy NA. Bone marrow mesenchymal stem cells suppress IL-9 in adjuvant-induced arthritis. Autoimmunity 2018; 51(1): 25-34. [DOI] [PubMed]
29. Enciso N, Ostronoff LLK, Mejias G, Leon LG, Fermin ML, Merino E, et al. Stem cell factor supports migration in canine mesenchymal stem cells. Vet Res Commun 2018; 42(1):29-38. [DOI] [PubMed]
30. Moradian H, Keshvari H, Fasehee H, Dinarvand R, Faghihi S. Combining NT3-overexpressing MSCs and PLGA microcarriers for brain tissue engineering: A potential tool for treatment of Parkinson's disease. Mater Sci Eng C Mater Biol Appl 2017; 76: 934-43. doi: 10.1016/j.msec.2017. 02.178. [PubMed]
31. Morandi F, Raffaghello L, Bianchi G, Meloni F, Salis A, Millo E, et al. Immunogenicity of human mesenchymal stem cells in HLA-class I-restricted T-cell responses against viral or tumor-associated antigens. Stem Cells 2008; 26(5): 1275-87. [DOI] [PubMed]
32. Talwadekar MD, Kale VP, Limaye LS. Placenta-derived mesenchymal stem cells possess better immunoregulatory properties compared to their cord-derived counterparts-a paired sample study. Sci Rep 2015; 5: 15784. [DOI]
33. Kim JY, Jeon HB, Yang YS, Oh W, Chang JW. Application of human umbilical cord blood-derived mesenchymal stem cells in disease models. World J Stem Cells 2010; 2(2): 34-8. doi: 10.4252/wjsc.v2.i2.34. [PubMed]
34. Yan M, Sun M, Zhou Y, Wang W, He Z, Tang D, et al. Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopamine neurons mediated by the Lmx1a and neurturin in vitro: potential therapeutic application for Parkinson's disease in a rhesus monkey model. PLoS One 2013; 8(5): e64000. [DOI] [PubMed]
35. Liu XS, Li JF, Wang SS, Wang YT, Zhang YZ, Yin HL, et al. Human umbilical cord mesenchymal stem cells infected with adenovirus expressing HGF promote regeneration of damaged neuron cells in a Parkinson's disease model. Biomed Res Int 2014; 2014: 909657. [DOI]
36. Khoo ML, Tao H, Meedeniya AC, Mackay-Sim A, Ma DD. Transplantation of neuronal-primed human bone marrow mesenchymal stem cells in hemiparkinsonian rodents. PLoS One 2011; 6(5): e19025. [DOI] [PubMed]
37. Ahmed HH, Salem AM, Atta HM, Eskandar EF, Farrag AR, Ghazy MA, et al. Updates in the pathophysiological mechanisms of Parkinson's disease: Emerging role of bone marrow mesenchymal stem cells. World J Stem Cells 2016; 8(3): 106-17. doi: 10.4252/wjsc.v8.i3.106. [PubMed]
38. Borlongan CV, Glover LE, Tajiri N, Kaneko Y, Freeman TB. The great migration of bone marrow-derived stem cells toward the ischemic brain: therapeutic implications for stroke and other neurological disorders. Prog Neurobiol 2011; 95(2): 213-28. doi: 10.1016/ j.pneurobio.2011.08.005. [PubMed]
39. Jiaming M, Niu C. Comparing neuroprotective effects of CDNF-expressing bone marrow derived mesenchymal stem cells via differing routes of administration utilizing an in vivo model of Parkinson's disease. Neurol Sci 2015; 36(2): 281-7. [DOI] [PubMed]
40. Chen D, Fu W, Zhuang W, Lv C, Li F, Wang X. Therapeutic effects of intranigral transplantation of mesenchymal stem cells in rat models of Parkinson's disease. J Neurosci Res 2017; 95(3): 907-17. [DOI] [PubMed]
41. Mohammad-Gharibani P, Tiraihi T, Arabkheradmand J. In vitro transdifferentiation of bone marrow stromal cells into GABAergic-like neurons. Iran Biomed J 2009; 13(3): 137-43. [PubMed]
42. Beane OS, Fonseca VC, Cooper LL, Koren G, Darling EM. Impact of aging on the regenerative properties of bone marrow-, muscle-, and adipose-derived mesenchymal stem/stromal cells. PloS One 2014; 9(12): e115963. [DOI] [PubMed]
43. Schwerk A, Altschuler J, Roch M, Gossen M, Winter C, Berg J, et al. Adipose-derived human mesenchymal stem cells induce long-term neurogenic and anti-inflammatory effects and improve cognitive but not motor performance in a rat model of Parkinson's disease. Regen Med 2015; 10(4): 431-46. [DOI] [PubMed]
44. Ahmed H, Salem A, Atta H, Ghazy M, Aglan H. Do adipose tissue-derived mesenchymal stem cells ameliorate Parkinson's disease in rat model? Hum Exp Toxicol 2014; 33(12): 1217-31. [DOI] [PubMed]
45. Chen X, Yan L, Guo Z, Chen Z, Chen Y, Li M, et al. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways. Cell Death Dis 2016: (9)7; e2369. [DOI] [PubMed]
46. Zhou Y, Sun M, Li H, Yan M, He Z, Wang W, et al. Recovery of behavioral symptoms in hemi-parkinsonian rhesus monkeys through combined gene and stem cell therapy. Cytotherapy 2013; 15(4): 467-80. [DOI] [PubMed]
47. Heo JS, Choi Y, Kim HS, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 2016; 37(1): 115-25. [DOI] [PubMed]
48. Mohanty V, Shah A, Allender E, Siddiqui MR, Monick S, Ichi S, et al. Folate receptor Alpha upregulates Oct4, Sox2 and Klf4 and downregulates miR-138 and miR-let-7 in cranial neural crest cells. Stem Cells 2016; 34(11): 2721-32. [DOI] [PubMed]
49. Choi HS, Kim HJ, Oh JH, Park HG, Ra JC, Chang KA, et al. Therapeutic potentials of human adipose-derived stem cells on the mouse model of Parkinson's disease. Neurobiol Aging 2015; 36(10): 2885-92. [DOI] [PubMed]
50. Deane JA, Gualano RC, Gargett CE. Regenerating endometrium from stem/progenitor cells: is it abnormal in endometriosis, Asherman's syndrome and infertility? Curr Opin Obstet Gynecol 2013; 25(3): 193-200. [DOI] [PubMed]
51. Mutlu L, Hufnagel D, Taylor HS. The endometrium as a source of mesenchymal stem cells for regenerative medicine. Biol Reprod 2015; 92(6): 138. [DOI] [PubMed]
52. Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years. Hum Reprod Update 2016; 22(2): 137-63. [DOI] [PubMed]
53. Wolff EF, Mutlu L, Massasa EE, Elsworth JD, Eugene Redmond D, Taylor HS. Endometrial stem cell transplantation in MPTP‐exposed primates: an alternative cell source for treatment of Parkinson's disease. J Cell Mol Med 2015; 19(1): 249-56. [DOI] [PubMed]
54. Wolff EF, Gao XB, Yao KV, Andrews ZB, Du H, Elsworth JD, et al. Endometrial stem cell transplantation restores dopamine production in a Parkinson's disease model. J Cell Mol Med 2011; 15(4): 747-55. [DOI] [PubMed]
55. Zhang D, Yang S, Toledo EM, Gyllborg D, Salto C, Carlos Villaescusa J, et al. Niche-derived laminin-511 promotes midbrain dopaminergic neuron survival and differentiation through YAP. Sci Signal 2017; 10(493). pii: eaal4165. doi: 10.1126/scisignal. [PubMed]
56. Vishwakarma SK, Bardia A, Tiwari SK, Paspala SA, Khan AA. Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: a review. J Adv Res 2014; 5(3): 277-94. [DOI] [PubMed]
57. Behrstock S, Ebert A, McHugh J, Vosberg S, Moore J, Schneider B, et al. Human neural progenitors deliver glial cell line-derived neurotrophic factor to parkinsonian rodents and aged primates. Gene Ther 2006; 13(5): 379-88. [DOI] [PubMed]
58. Bjugstad KB, Teng YD, Redmond DE Jr, Elsworth JD, Roth RH, Cornelius SK, et al. Human neural stem cells migrate along the nigrostriatal pathway in a primate model of Parkinson's disease. Exp Neurol 2008; 211(2): 362-9. doi: 10.1016/j.expneurol. 2008.01.025. [PubMed]
59. Johnston TH, Fox SH, McIldowie MJ, Piggott MJ, Brotchie JM. Reduction of L-DOPA-induced dyskinesia by the selective metabotropic glutamate receptor 5 antagonist 3- [(2-methyl-1, 3-thiazol-4-yl) ethynyl] pyridine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson's disease. J Pharmacol Exp Ther 2010; 333(3): 865-73. [DOI] [PubMed]
60. Leiphart JW, Valone FH 3rd. Stereotactic lesions for the treatment of psychiatric disorders. J Neurosurg 2010; 113(6): 1204-11. [DOI] [PubMed]
61. Salama M, Sobh M, Emam M, Abdalla A, Sabry D, El-Gamal M, et al. Effect of intranasal stem cell administration on the nigrostriatal system in a mouse model of Parkinson's disease. Exp Ther Med 2017; 13(3): 976-82. [DOI] [PubMed]
62. Boroujeni ME, Gardaneh M. Umbilical cord: an unlimited source of cells differentiable towards dopaminergic neurons. Neural Regen Res 2017; 12(7): 1186-92. doi: 10.4103/1673-5374.2. [PubMed]
63. Ishii T, Eto K. Fetal stem cell transplantation: Past, present, and future. World J Stem Cells 2014; 6(4): 404-20. doi: 10.4252/wjsc.v6.i4.404. [PubMed]
64. Wang Y, Tien LT, Lapchak PA, Hoffer BJ. GDNF triggers fiber outgrowth of fetal ventral mesencephalic grafts from nigra to striatum in 6-OHDA-lesioned rats. Cell Tissue Res 1996; 286(2): 225-33. [PubMed]
65. Morrison SJ. Neuronal potential and lineage determination by neural stem cells. Curr Opin Cell Biol 2001; 13(6): 666-72. [DOI]
66. Pardal R, Lopez-Barneo J. Neural stem cells and transplantation studies in Parkinson's disease. Adv Exp Med Biol 2012; 741: 206-16. [DOI] [PubMed]
67. Ourednik J, Ourednik V, Lynch WP, Schachner M, Snyder EY. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol 2002; 20(11): 1103-10. [DOI] [PubMed]
68. Xiao JJ, Yin M, Wang ZJ, Wang XP. Transplanted neural stem cells: playing a neuroprotective role by ceruloplasmin in the substantia nigra of PD model rats? Oxid Med Cell Longev 2015; 2015: 618631. [DOI] [PubMed]
69. Miguelez C, Navailles S, De Deurwaerdere P, Ugedo L. The acute and long-term L-DOPA effects are independent from changes in the activity of dorsal raphe serotonergic neurons in 6-OHDA lesioned rats. Br J Pharmacol 2016; 173(13): 2135-46. [DOI] [PubMed]
70. Grosch J, Winkler J, Kohl Z. Early degeneration of both dopaminergic and serotonergic axons–a common mechanism in Parkinson’s disease. Front Cell Neurosci 2016;10: 293. [DOI] [PubMed]
71. Zhang J, Wang X, Li J, Huang R, Yu X, Dong C, et al. The preclinical research progress of Stem cells therapy in Parkinson’s disease. Biomed Res Int 2016; 2016: 5683097. [DOI] [PubMed]
72. Lindvall O. Treatment of Parkinson's disease using cell transplantation. Philos Trans R Soc Lond B Biol Sci 2015; 370(1680): 20140370. doi: 10.1098/rstb.2014.0370. [PubMed]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Journal of Inflammatory Diseases

Designed & Developed by : Yektaweb