The effect of microwave on micronucleus induction and nuclear division index changes on Balb/c mice lymphocytes

A Safari Varyani SB Mortazavi A khavanin SM Moazeni A kazemnegad

Abstract

Background: Biological effects of microwave radiation on living creatures have been the focus of many investigations over the last decade and the influence of different wave parameters such as frequency, power, exposure time, and modulation has been elucidated.

Objective: The main purpose of the present study was to investigate the effect of microwave radiation on alterations of micronucleus induction and nuclear divisions index under different conditions.

Methods: A total of 48 Balb/c mice divided in eight groups (7 as cases and 1 as control) were exposed to microwave generator while restrained in specially designed Plexiglas chamber. Later, the frequency of micronucleus in binucleated lymphocytes and NDI was evaluated using micronucleus assay on mouse lymphocytes.

Findings: Microwave radiation at different conditions (frequency, power, modulation and exposure time) showed no significant effect on frequency of micronucleus, however, the nuclear division index was significantly decreased under such conditions.

Conclusion: Based on data found in our study, the microwave radiation as we used during the present work, caused significant effect on nuclear division index in mouse lymphocytes.

Keywords: Microwave, lymphocyte, micronucleus, nuclear division index, mice

چکیده

زمینه: در سال‌های اخیر مطالعه‌های زیادی در مورد اثرات سلولی میکروویوی در موجودات زنده انجام شده است و اثرات فرکانس، زمان پرتوگیری و مدولاسیون امواج بر بافت‌های مختلف بدن انسان مورد商ندیده شده‌اند.

هدف: مطالعه و مقایسه نتایج اثر فرکانس، زمان پرتوگیری و مدلولاسیون بر تعیین شماره و شاخص تقسیم هسته‌های در لفوسیت‌های موش انگلیک. نتایج: مواد و روش‌ها: این مطالعه تجربی در سال 1384 در تهران انجام شد. در این تحقیق، هر یک از 80 موش نوعی موش نر ماهه از نژاد Balb/c قرار گرفت. سپس با استفاده از روش ارزیابی میکروانالیز، میکروویوهای موش لنفوسیتی از خلال نمایه‌های موش انگلیک استفاده شد.

نتیجه‌گیری: میکروویوهای موش لنفوسیتی امتیازات شایع در نمایه‌های موش انگلیک، باعث کاهش شاخص تقسیم هسته‌های در لنفوسیت‌های موش انگلیک نمی‌شود. خلاصه کلی: میکروویوهای موش لنفوسیتی، شاخص تقسیم هسته‌های موش انگلیک
سلولی) است. در این مطالعه اثر میکروویو بر
نفوذپذیری موش تیپ بند شد.

مقدمه: در چهار امرور میکروویو کاربردی‌های قرارگرفته در
عرشه‌های میکروویو دارد. استفاده گسترده‌‌ترین نشان‌دهنده قوی
ماهورهای الی‌پاکشی فیبر، منش唯一 سبب شده تا در رادیو‌های
خانگی و صنعتی و استفاده‌های پزشکی از عمده‌ترین
کاربردهای آن است.(1,2) این امواج می‌توانند اثرات ویژه در
ارگان‌های زندی ایجاد نمایند.(3) که در اثر چنین
ارزی میزان‌های الکتریکی و مناطقی توسط
بافته‌شده‌ای که ای اثرات، تعبیر میزان
جهت وزن امواج در بین موجودات زنده است، ولی

مواد و روش‌ها: این مطالعه تجربی در سال 1284 در تبریز
مدرس تربیت شد. در این مطالعه 88 سر موس
نر دو ماهه در 8 گروه 6 تایی بررسی شدند. یک
گروه به عنوان شاهد و 2 گروه به عنوان گروه‌های در
نظر گرفته شدند.

برای پرورش این افراد، شمای دوختن و ترکیب
طراهی نشان داده شد. انتخاب 20 سانتی‌متر از جنس بلک‌پوش کامل بود که در
مکان آن رنگ نسبت به پیشنهاد تاماین مکانیکی به
ابعاد 110 سانتی‌متر بود که به منظور پیشگیری از
انکاکس امواج سطحی اکتاک می‌باشد. اسکلت
این‌گونه ایجاد شده با گرافیت با ابعاد معین پوشیده شد.

دستگاه امواج نمایش‌دهنده زنده، نشان‌دهنده و
آتن پس از آزمایش اکتش در
گروه‌های مواجهه به مدت 8 ساعت در روز به شرح
ژیر در معرض میکروویو قرار گرفتند:
گروه 1 (فرکانس 950 مگاهرتز، توان 5 و زمان
تابی 4، فرکانس 890 مگاهرتز، توان 6 و زمان
تابی 3) گروه 2 (فرکانس 990 مگاهرتز، توان 5 و زمان
تابی 4) گروه 3 (فرکانس 950 مگاهرتز، توان 5 و زمان
تابی 4) گروه 4 (فرکانس 990 مگاهرتز، توان 5 و زمان
تابی 4) گروه 5 (فرکانس 990 مگاهرتز، توان 5 و زمان
تابی 4) گروه 6 (فرکانس 950 مگاهرتز، توان 5 و زمان
تابی 4) گروه 7 (فرکانس 990 مگاهرتز، توان 5 و زمان
تابی 4) گروه 8 (فرکانس 990 مگاهرتز، توان 5 و زمان
تابی 4).

در طول مدت پرورش، دمای اتفاق پرتویی در
محدوده 24 تا 28 درجه سانتی‌گراد ناتیب شد. پس از
انجام زمان پرتویی، آزمایش میکروانالوگ‌های

لایه‌های به یاد افراد بسیاری. به یاد
خواهد نماید که این امواج با توجه به انرژی و
سپاری که رسانای آنها قادر باشد نیستند.(5) به‌طور
عملی امواج میکروویو در مطالعه‌ها باید
توافق نظر وجود دارد.(4) این در حالتی است که در
سال‌های اخیر افراد بسیاری به صورت خاصی و
غیر متغیر در معرض امواج با توان بیش از یک مرتبه
فوتونات احساس مخصوصی جهت انتقال اترات
زنتوسکوپ اموج گیر اثر نیستند. به‌طور کلی، روی
آزمایش حیاتی با روان‌شناسی، آزمایش میکروانالوگ‌های
است که در سال‌های مختلف بین موجودات زنده
قابل انجام است و با سرعت کافی
اسبیتشی وارد به سلول با می‌شود. این
در این نوع همزمان می‌توان شاخص
تیم‌هایی را نیز مورد ارزیابی قرار داد. این شاخص
شان درمان اثر عوامل زبان اور بر تکنیک امواج (اثر

Downloaded from journal.qums.ac.ir at 16:52 +0330 on Saturday December 29th 2018
روش ۲۵ دقیقه جداسازی شد. انتقال تابیت و توزیع متوسط دستگاه میکروتکلمنوس با شدت ۵ زمان ۴ دقیقه جداسازی شد. تاکنون میکروتکلمنوس با شدت ۵ زمان ۴ دقیقه جداسازی شد. با استفاده از رابطه زیر محاسبه شد:

\[NDI = \frac{m_1 + 2(m_2) + 3(m_3) + 4(m_4)}{N} \]

در رابطه فوق، \(m_1, m_2, m_3, m_4 \) به ترتیب تعداد سلول‌های کیف تعریف شد، و سیله، چهار، سه، و دو سلول‌های سبزه است. تعداد هر کدام با توجه به افزار SPSS و آزمون آماری آنالیز واریانس تجزیه و تحلیل شدند.

پایه‌ها:

نتایج مطالعه زنوتی مارکین و همکاران مطالبت دارند. در مطالعه مذکور لنفوسیت های خون انسان به مدت 0.15، 0.2 و 0.4 دقیقه به صورت آزمایشگاهی در محیط ماکروویو با فرکانس 2/77 گیگاهرتز و توان 0.2 و 0.3 میلیوات بسیاری متروی قرار داده شدند و میانگین میکروکلنس در افزایش زمان مواده به پایندگی افزایش یافت و این اتفاقات در زمان های 30 دقیقه و 60 دقیقه از نظر آماری متناسب بود. این اتفاقات در مطالعه حاضر از نظر آماری معنی دار نبود که به نظر می‌رسد علت این توان کم به کار گرفته شده باشد. همچنین در مطالعه ذیل نشان داد که ماکروویو با فرکانس 0.3، 0.4 و 0.5 گیگاهرتز به صورت آزمایشگاهی در معرض امواج الکترومغناطیس قرار گرفته‌اند به وجود آورد. این نتایج با یافته‌های مطالعه حاضر هماهنگی دارد.

جدول 1- میانگین شاخص میکروکلنس در گروه‌های مورد آزمایش به وسیله 0.15 سول لنفوسیت دوسته‌های NDI

<table>
<thead>
<tr>
<th>شرایط پرتو‌دهی</th>
<th>میانگین شاخص میکروکلنس</th>
<th>فرکانس</th>
<th>جریه</th>
</tr>
</thead>
<tbody>
<tr>
<td>زمان (هفته)</td>
<td>توان (وات)</td>
<td>(گیگاهرتز)</td>
<td></td>
</tr>
<tr>
<td>0.15 ± 0.1</td>
<td>1</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>0.2 ± 0.2</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>0.3 ± 0.3</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>0.4 ± 0.4</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>0.5 ± 0.5</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>0.6 ± 0.6</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>0.7 ± 0.7</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
</tbody>
</table>

جدول 2- مقادیر میانگین شاخص جریه NDI در گروه‌های مواده و شاهد

<table>
<thead>
<tr>
<th>شرایط پرتو‌دهی</th>
<th>میانگین شاخص میکروکلنس</th>
<th>فرکانس</th>
<th>جریه</th>
</tr>
</thead>
<tbody>
<tr>
<td>زمان (هفته)</td>
<td>توان (وات)</td>
<td>(گیگاهرتز)</td>
<td></td>
</tr>
<tr>
<td>0.15 ± 0.1</td>
<td>1</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>0.2 ± 0.2</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>0.3 ± 0.3</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>0.4 ± 0.4</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>0.5 ± 0.5</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>0.6 ± 0.6</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>0.7 ± 0.7</td>
<td>5</td>
<td>5</td>
<td>90</td>
</tr>
</tbody>
</table>

بحث و نتیجه‌گیری:

بنابراین میانگین NDI با افزایش زمان تایید ماکروویو افزایش می‌یابد و افزایش توان نیز نسبت افزایش شاخص تقابل است. از این نتیجه می‌توان به طور کلی تأثیر این امواج شاخص تقابل سلولی را کاهش می‌دهد.

* این مطالعه نشان داد که افزایش زمان پرتوگیری با ماکروویو سبب افزایش میانگین میکروکلنس در گروه‌های مواده نسبت به گروه شاهد می‌شود، اما این تغییرات از نظر آماری معنی‌دار نبود. نتایج این مطالعه با

Downloaded from journal.qums.ac.ir at 16:52 +0330 on Saturday December 29th 2018

10. EHP-24 WGCL Wedge Absorber. Available at: http://www.emctest.com

